Experimental Tasks: APhO 2022

Academic Committee: Chandan Ralekar, Siddhant Mukherjee, Siddharth Tiwary, Charudutt Kadolkar, Bipul Pal, Manoj Harbola, Mamatha Maddur, Praveen Pathak Acknowledgement: Chinmay Haritas, Shirish Pathare

APhO 2022

EQ1: Magnetic Black box

Based on making use of various sensors available on a smartphone.

Motivation

Hall effect based magnetic sensor to detect the magnetic field.

Experiment

Blackbox (magnet in a conducting pipe)

To identify different sections of the pipe with the help of a smartphone.

4 / 18

Theoretical background

The axial magnetic field B_x of a point dipole (dipole moment M) at the distance x

$$B_{x} = \frac{\mu_0}{2\pi} \frac{M}{x^3}$$

When the magnet is moving with a constant non-relativistic velocity

$$B_{x}(t) = \frac{\mu_0}{2\pi} \frac{M}{(vt)^3}$$

$$\left(\frac{\mu_0 M}{2\pi B_x(t)}\right)^{1/3} = vt$$

Three parts of the experiment:

- Find the location of the magnetometer in the smartphone.
- Determine the dipole moment *M*.
- Determine v of the magnet.

Simulation

1. Find the location of the magnetometer

2. Dipole moment of the magnet

$$B_w = \frac{\mu_0}{2\pi} \frac{M}{x^3}$$

3. Identify sections of the pipe

When the magnet is dropped in a non magnetic conducting pipe such as aluminium or copper; $m\ddot{y}=mg-k\dot{y}$

Length of each section

Identify the entry and exit time stamps in the data for each section and use the obtained velocities to calculate the section lengths.

EQ2: Accoustic Black box

Doppler effect in waves and an attempt to simulate acoustically the light waves emitted from the rotating planets.

Sound source starts moving at A and emits frequency f_0 . S is the position of the source at later time t.

You are given a detector D which you can place or move in the x-y plane.

Find $f_0, \omega, R, v_s, \beta$, coordinates of A and C.

EQ2: Acoustic black box

Detector's velocity: v_D Vector \vec{DS} : \hat{n} Source's net velocity: v_T Frequency detected by the detector, when S is moving away (or approaching) from D

$$f(t') = f_0 \frac{c - \vec{v}_{\mathsf{D}} \cdot \hat{n}(t)}{c \pm \vec{v}_{\mathsf{T}} \cdot \hat{n}(t)}$$

At large distance (or time)

Simulation

Asymptotic limit

Detector position $r_{\rm D}=10000\,{\rm m}$, $\theta=35^{\circ}$

Above three equations yield
$$f_0, \omega, R, f_0$$
 and v_s .

PP (HBCSE-TIFR) APhO experiment May 26

16 / 18

Source's initial coordinates - Triangulation

Detector Location (r_D, θ)	First signal received (s)
(500,0)	1.535
(0,500)	1.273
(0,0)	1.979

Summary

- How to setup an experiment.
- Observational and experimental skills, visualization, data interpretation and analytical skills.