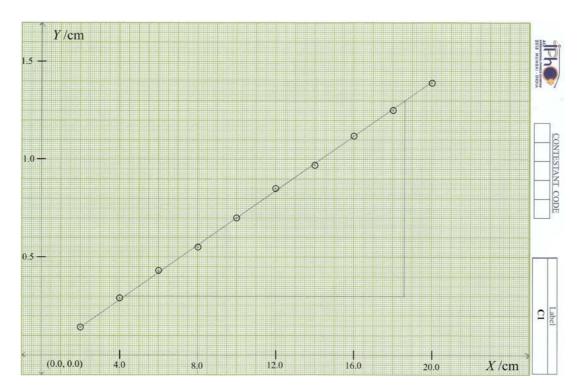


### 水面の表面張力波による光の回折1


Part C: 反射角の測定

[C1] 表 C1

| Obs. | X/cm | Y /cm |
|------|------|-------|
| no.  |      |       |
| 1    | 2.0  | 0.136 |
| 2    | 4.0  | 0.285 |
| 3    | 6.0  | 0.425 |
| 4    | 8.0  | 0.549 |
| 5    | 10.0 | 0.703 |
| 6    | 12.0 | 0.846 |
| 7    | 14.0 | 0.965 |
| 8    | 16.0 | 1.124 |
| 9    | 18.0 | 1.251 |
| 10   | 20.0 | 1.390 |

[C2]

グラフ  $C1:\theta$ を求めるグラフ C1: 横軸 X 縦軸 Y



傾き = 0.0699

 $\theta$  =  $4.0^{\circ}$ 

<sup>&</sup>lt;sup>1</sup> Shirish Pathare (HBCSE, Mumbai)と K G M Nair (CMI, Chennai) がこの問題の主な作問者である。the Academic Committee、Academic Development Group と the International Board の協力に感謝する。



#### Part D: 水の表面張力の測定

[D1]:

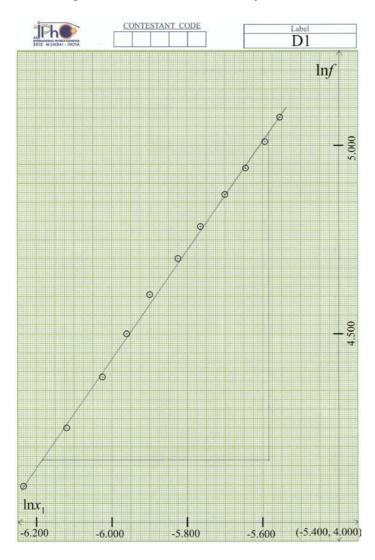
 $l_1 = 98.5 \text{ cm}$   $l_2 = 5.5 \text{ cm}$  L = 1.04 m

[D2]:

表 D1

| Obs. | f/Hz | $2x_2$ /cm | $x_1$ /cm | $x_1$ /m |
|------|------|------------|-----------|----------|
| 1    | 60   | 0.782      | 0.196     | 0.00196  |
| 2    | 70   | 0.880      | 0.220     | 0.00220  |
| 3    | 80   | 0.966      | 0.242     | 0.00242  |
| 4    | 90   | 1.030      | 0.258     | 0.00258  |
| 5    | 100  | 1.096      | 0.274     | 0.00274  |
| 6    | 110  | 1.184      | 0.296     | 0.00296  |
| 7    | 120  | 1.253      | 0.313     | 0.00313  |
| 8    | 130  | 1.336      | 0.334     | 0.00334  |
| 9    | 140  | 1.415      | 0.354     | 0.00354  |
| 10   | 150  | 1.489      | 0.372     | 0.00372  |
| 11   | 160  | 1.545      | 0.386     | 0.00386  |

[D3]:


$$\omega^{2} = \frac{\sigma}{\rho} k^{q}$$

$$f^{2} = \frac{1}{4\pi^{2}} \frac{\sigma}{\rho} \left( \frac{2\pi}{\lambda} \frac{\sin \theta}{L} \right)^{q} (x_{1})^{q}$$

$$\ln f = \frac{1}{2} \ln \left[ \frac{1}{4\pi^{2}} \frac{\sigma}{\rho} \left( \frac{2\pi}{\lambda} \frac{\sin \theta}{L} \right)^{q} \right] + \frac{q}{2} \ln x_{1}$$



### グラフ qを求めるグラフ: 横軸 $\ln f$ 縦軸 $\ln x_1$



| 表 D2        |        |         |
|-------------|--------|---------|
| Obs.<br>No. | ln x1  | $\ln f$ |
| 1           | -6.235 | 4.094   |
| 2           | -6.119 | 4.248   |
| 3           | -6.024 | 4.382   |
| 4           | -5.960 | 4.500   |
| 5           | -5.900 | 4.605   |
| 6           | -5.823 | 4.700   |
| 7           | -5.767 | 4.787   |
| 8           | -5.702 | 4.868   |
| 9           | -5.644 | 4.942   |
| 10          | -5.594 | 5.011   |
| 11          | -5.557 | 5.075   |

$$q = \underline{2.90}$$

#### 表面張力の決定:

式 2: 
$$\omega^2 = \frac{\sigma}{\rho} k^3$$

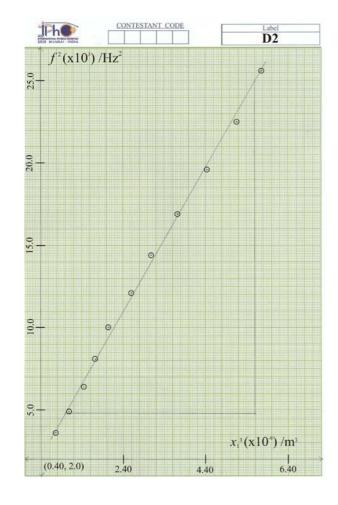


#### [D4]:

 $\sigma$ を求めるグラフ: 横軸  $f^2$  縦軸  ${x_1}^3$ 

表 D3

| Obs. | $f^2(\times 10^3)$       | $x_1^3 (\times 10^{-8})$ |
|------|--------------------------|--------------------------|
| No.  | / <b>Hz</b> <sup>2</sup> | / <b>m</b> <sup>3</sup>  |
| 1    | 3.6                      | 0.75                     |
| 2    | 4.9                      | 1.07                     |
| 3    | 6.4                      | 1.42                     |
| 4    | 8.1                      | 1.72                     |
| 5    | 10.0                     | 2.06                     |
| 6    | 12.1                     | 2.59                     |
| 7    | 14.4                     | 3.07                     |
| 8    | 16.9                     | 3.73                     |
| 9    | 19.6                     | 4.44                     |
| 10   | 22.5                     | 5.15                     |
| 11   | 25.6                     | 5.75                     |


#### 表面張力:

$$\omega^2 = \frac{\sigma}{\rho} k^3$$

$$\omega^{2} = \frac{\sigma}{\rho} k^{3}$$

$$f^{2} = \frac{\sigma^{2\pi}}{\rho} \frac{\sin^{3} \theta}{\lambda^{3}} (x_{1})^{3}$$

#### 計算:



Slope = 
$$4.39 \times 10^{11} \text{ Hz}^2/\text{m}^3$$

$$\therefore \text{Slope} = \frac{\sigma}{\rho} \frac{2\pi \sin^3 \theta}{\lambda^3} = \frac{\sigma}{1000} \times \frac{2 \times 3.14}{(635 \times 10^{-9})^3} \frac{(0.0698)^3}{(1.04)^3}$$

$$\therefore \frac{\sigma}{1000} \times 7.415 \times 10^{15} = 4.39 \times 10^{11}$$

$$\therefore \sigma = 59.2$$
mN/m



Part E: 水の粘性係数の測定

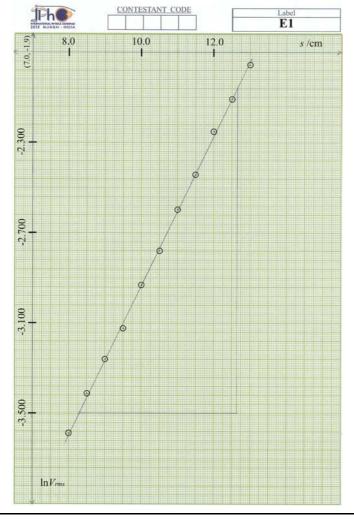

[E1]: 振動子の周波数 = <u>100 Hz</u>

表 E1

| Obs.<br>No. | s<br>/cm | $V_{rms}$ /V | $\ln(V_{rms})$ |
|-------------|----------|--------------|----------------|
| 1           | 8.0      | 0.0276       | -3.590         |
| 2           | 8.5      | 0.0330       | -3.411         |
| 3           | 9.0      | 0.0385       | -3.257         |
| 4           | 9.5      | 0.0441       | -3.121         |
| 5           | 10.0     | 0.0534       | -2.930         |
| 6           | 10.5     | 0.0622       | -2.777         |
| 7           | 11.0     | 0.0745       | -2.597         |
| 8           | 11.5     | 0.0870       | -2.442         |
| 9           | 12.0     | 0.1050       | -2.254         |
| 10          | 12.5     | 0.1215       | -2.108         |
| 11          | 13.0     | 0.1412       | -1.958         |

[E2]:

 $\delta$ を求めるグラフ: 横軸  $\ln V_{rms}$  縦軸 s



Slope = 
$$0.331$$
 cm<sup>-1</sup>

$$\delta = 0.4 \times 0.3310 = 0.1324 \text{cm}^{-1}$$

$$\delta = 13.2 \,\mathrm{m}^{-1}$$

[E3]:

粘性係数ηの決定:

$$\delta = \frac{8}{3} \frac{\pi \eta f}{\sigma}$$

$$\eta = \frac{3}{8} \frac{\delta \sigma}{\pi f} = \frac{3}{8} \times \frac{13.2 \times 59.2 \times 10^{-3}}{3.14 \times 100} = 0.933 \text{ mPa.s}$$

$$\eta = 0.93 \, \mathrm{mPa.s}$$