| 行事/取組名称 | プレチャレンジ in 栃木県立大田原高等学校        |    |             |
|---------|-------------------------------|----|-------------|
| 担当者     | 近藤泰洋(JPhO)                    |    |             |
| 開催日時・期間 | 平成 28 年 3 月 19 日<br>13 時~17 時 | 会場 | 栃木県立大田原高等学校 |
| 主催      | 物理オリンピック日本委員会                 |    |             |
| 共催      |                               | 後援 |             |
| 協       |                               |    |             |

## 概要

大田原高校、大田原女子高校、黒磯高校の3校の生徒24名に対して、物理チャレンジの説明を行った後、LED の原理とその特性についての実験を指導した。各高校からは1名づつ引率教員が付き添い、大田原高校からは教頭1名も参加。

| 参加者  教員 | 高校生           | 中学生 |
|---------|---------------|-----|
| 教員 4名   | 1年生10名、2年生14名 | 0名  |

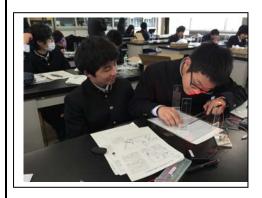
## 報告事項1

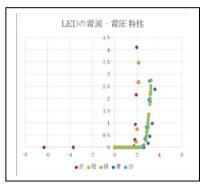
高校側の希望により、LED の発光機構についての理解を主とした実験を行った。

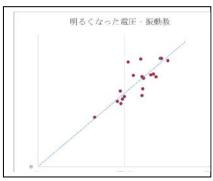
始めに電子の持つエネルギーとして、地上の物体の位置エネルギーとの比較により、電界中を移動した電子の持つエネルギーが eV で与えられること、原子や固体中の電子がどの様な状態を取るかを説明、金属などの導体、絶縁体、半導体の違いについて簡単な講義を行った。特に、半導体と絶縁体には禁止帯という電子のエネルギー状態の無い部分、バンドギャップ、が存在することを、2個の電子が同じ状態を取ることができないパウリの



原理とともに説明した。次いで、電子がエネルギー状態間を遷移した時のエネルギーが光となること、及び半導体の p 型、n型について説明した後、p n接合を説明し、印加電圧によりどの様な変化が起きるかを説明した。


実験1:以上の理解を基に、ダイオードとしてのLEDの電流電圧特性の測定を、赤、青、黄、緑の4色のLEDについて測定するため、ブレッドボードを利用し、各自回路図を参考に測定回路を組み立てた。デジタルテスターでLEDにかかる電圧、電流を測定し、グラフに表示した。実験2:pn接合に電圧を印加した時の再結合により発光する機構から、バンドギャップが発光の光子エネルギーに等しく、ほぼ印加電圧から求められるeVに等しくなることを説明した後、4色のLEDについて発光が明るくなる電圧V。を求め、値を表にまとめる。


実験3:簡易分光器を組み立て、発光波長を測定する。


始めに回折格子の原理を簡単に説明し、蛍光灯の像が、蛍光灯とは違った方向から幾つかの光に分かれて見えることを、簡易分光器の透過型回折格子で確かめる。簡易分光器を組み立て、各色の LED 光の回折角の  $\sin$  を分光器の下に敷いた方眼紙を利用して求め、発光波長を求める。発光波長と前の実験で求めた  $V_c$ を表に記入し、振動数と  $eV_c$ に変換、これらの間をつなぐプランク定数を求めた。

以上の実験を1年生は2人一組とし、2年生は各個人で行ったが、大部分が全ての測定を終了でき、最後に教員が何人かの結果を一つのグラフにまとめ、プランク定数として $6.4\times10^{-34}$  Js

## という結果を得た。







今回は、高校側の希望により、LEDの理解を主としたので、大部分の時間を実験に割き、物理チャレンジの紹介は、ポスター等の資料配布と、実験終了後に簡単に第1チャレンジへの参加を呼び掛けただけとした。

終了後のアンケートによると、大多数がためになったし、LED の理解が進んだようである。また、第1チャレンジに参加を予定、あるいは検討中との答えが88%であった。今後の希望として放射線、原子、量子力学などに関係した実験、物理と数学の結びつきがわかる実験、プログラミングと組み合わせた実験などが挙げられていた。これらは今後のプレチャレンジの参考となる。