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General Grading Guidelines
 
When student’s solutions are correct and s/he also show how solutions were obtained, the stduent
gets full credit. The scheme oulined below is helpful if the student’s answers are partially correct.
Attention will be paid to the detailed solution so, if the final answer is correct but it is obtained by
incorrect method(s) then no credit will be given. Alternative solutions may exist and will be given
due credit.
 
Partial or full outcomes obtained for later sections in the problemwhich are incorrect solely because
of errors being carried forward from previous sections, but are otherwise reasonable, will not be
further penalized. For example a dimensioanlly wrong answer when carried forward will not get
any credit in the subsequent sections. A numerically wrong evaluation when carried forward will get
credit in subsequent sections unless the numerical answer is patently wrong (e.g. the value of g is
981 m/sec2! )
 
Incorrect or no labeling of an axis is penalized by -0.1 points
 
The numerical answer (i) must be correct to +/- 10% AND (ii) must respect significant figures.
 
It maybe noted that NO micro-marking scheme takes care of all contingencies. A certain
amount of discretion rests with and a certain level of judgement is invested in the academic
committee.

The Stern-Gerlach Experiment: THE SOLUTION

A.1 Speed of the Silver Atoms:

We employ the equipartition theorem. Let 𝑣2 be the mean square speed of the
silver atoms in the oven kept at 1200K. Then

𝑚𝑣2

2 = 3𝑘𝐵𝑇
2

where 𝑘𝐵 is the Boltzmann constant. This yields the root mean square speed
to be 5.255×102 m⋅s−1.

[0.5]
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B.1 The Basic Expression
The length 𝑙1 is irrelevant and will not be part of the expression.
The magnitude of the acceleration 𝑎 of the silver atoms in the region defined
by 𝑙2 is

𝑎 = 𝜇𝑠
𝑚

𝑑𝐵
𝑑𝑥

[0.4]
and it will be either in the +𝑥 or -𝑥 direction. At the same time it has a con-
stant horizontal velocity 𝑣𝑧. It traverses the region 𝑙2 in time 𝑙2/𝑣𝑧. Thus after
traversing the inhomogeneous region the deflection in say the +𝑥 direction is

𝛿1 = 1
2

𝜇𝑠
𝑚

𝑑𝐵
𝑑𝑥

𝑙22
𝑣2𝑧

[0.6]
For the remaining part of the flight the atom will have a constant hoirzontal
speed 𝑣𝑧 and a constant vertical speed 𝑣𝑥0 = (𝜇𝑠𝑑𝐵/𝑑𝑥) (𝑙2/𝑚𝑣𝑧). On account of
the 𝑣𝑥 component the atom will acquire an additional deflection

𝛿2 = 𝑙3𝑣𝑥0/𝑣𝑧

This yields

𝛿2 = 𝑙3𝑙2
𝜇𝑠

𝑚𝑣2𝑧

𝑑𝐵
𝑑𝑥

[0.4]
The total deflection in the +𝑥 direction is 𝛿1 +𝛿2. The splitting seen on the screen
in this idealized case is twice this amount, e.g. 2 (𝛿1 + 𝛿2) . Thus we obtain

Δ𝑥 = 2𝜇𝑠
𝑚

𝑑𝐵
𝑑𝑥

𝑙2
𝑣2𝑧

(𝑙2/2 + 𝑙3)

[0.6]
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C.1 The Inhomogeneous Magnetic Field:

(0,a)

(0,-a)

(x,y)

A1

A2

P

Let
⃗𝐴1𝑃 = ⃗𝑟1 = 𝑥 ̂𝑖 + (𝑦 − 𝑎) ̂𝑗

and
⃗𝐴2𝑃 = ⃗𝑟2 = 𝑥 ̂𝑖 + (𝑦 + 𝑎) ̂𝑗

This gives for �⃗�(𝑥, 𝑦)

𝜇𝐼0
2𝜋 [�̂� × (𝑥 ̂𝑖 + (𝑦 − 𝑎) ̂𝑗

𝑟2
1

− �̂� × (𝑥 ̂𝑖 + (𝑦 + 𝑎) ̂𝑗
𝑟2

2
] (1)

[0.4+0.4]

= 𝜇𝐼0
2𝜋𝑟2

1𝑟2
2

[(𝑥 ̂𝑗 − (𝑦 − 𝑎) ̂𝑖)(𝑥2 + (𝑦 + 𝑎)2) − (𝑥 ̂𝑗 − (𝑦 + 𝑎) ̂𝑖)(𝑥2 + (𝑦 − 𝑎)2)]

= 𝜇𝐼0 𝑎
𝜋𝑟2

1𝑟2
2

[2𝑥𝑦 ̂𝑗 + (𝑥2 − 𝑦2 + 𝑎2) ̂𝑖] (2)

[0.7]

⃗𝐼 = 𝐼0�̂�

⃗𝐼 = −𝐼0�̂�

x

y

𝑃0(𝑥𝑐, 𝑦𝑐)

CD

A

O R Q

𝑃1(𝑥, 𝑦)

Air

P

B
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C.2 Direction at point 𝑅: Field at the point 𝑅 ((𝑥𝑐 + √𝑥2𝑐 + 𝑎2, 0) is given by substi-
tuting 𝑦 = 0. On simple inspection the ̂𝑗 component vanishes. Thus �⃗�(𝑥, 0) ∝ ̂𝑖

[0.2]
Direction at point 𝑃0: Field at 𝑃0 ((𝑥𝑐, 𝑦𝑐 = (𝑥2

𝑐 + 𝑎2)1/2)) is given, using Eq.(2)

𝜇𝐼0
𝜋𝑟2

1𝑟2
2

(2𝑥𝑐(𝑥2
𝑐 + 𝑎2)1/2 ̂𝑗 + (𝑥2

𝑐 − 𝑥2
𝑐 − 𝑎2 + 𝑎2) ̂𝑖)

The ̂𝑖 component is zero. Thus �⃗�(𝑥𝑐, (𝑥2
𝑐 + 𝑎2)1/2) ∝ ̂𝑗

[0.3]

First Alternative Solution
We can show in general that the field at any point on the circle will be radial
(i.e. normal to the circle). We will confine our discussion to the z=0 plane.
Consider a point (𝑥𝑐, 𝑦) with radius √𝑥2𝑐 + 𝑎2. The equation of a circle with
(𝑥𝑐, 0) as centre and √𝑥2𝑐 + 𝑎2 as radius is

(𝑥 − 𝑥𝑐)2 + 𝑦2 = 𝑥2
𝑐 + 𝑎2

or
𝑥2 − 2 𝑥 𝑥𝑐 + 𝑦2 = 𝑎2 (3)

If at the point (𝑥𝑐, 𝑦𝑐) themagnetic field is along ̂𝑗 then the component along
̂𝑖 is zero. (𝑥𝑐, 0) is identified with the point C on the figure. The point 𝑦𝑐 is
then,

𝑥2
𝑐 − 𝑦2

𝑐 + 𝑎2 = 0
or

𝑦2
𝑐 = 𝑥2

𝑐 + 𝑎2 (4)

Now consider a line joining C (𝑥𝑐, 0) to any point 𝑃𝐶(𝑥, 𝑦) lying on the circle
given by eq.(3). The radial vector is ⃗𝐶𝑃 𝐶 = (𝑥 − 𝑥𝑐) ̂𝑖 + 𝑦 ̂𝑗. The magnetic
field at 𝑃𝐶 is

∝ �⃗�(𝑥, 𝑦, 0) = (𝜇𝐼0
𝜋 ) (2𝑥𝑦 ̂𝑗 + (𝑥2 − 𝑦2 + 𝑎2) ̂𝑖)

To show that they are in the same direction, we evaluate the cross product,
⃗𝐶𝑃𝐶 ×�⃗�. The cross product is proportional to �̂� which is a unit vector along

the direction which is normal to both 𝐶𝑃𝐶 and �⃗� and is along �̂�

⃗𝐶𝑃 𝐶 × �⃗� ∝ (2 𝑥 𝑦(𝑥 − 𝑥𝑐) − 𝑦(𝑥2 − 𝑦2 + 𝑎2)) �̂�
which simplifies to

𝑦(𝑥2 − 2𝑥 𝑥𝑐 + 𝑦2 − 𝑎2)�̂�
Using eq.(3), this is zero, proving the result.
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C.2 (cont.)

Second Alternative Solution
To show that the field lines are radial over the circe one may merely show the proportionality of
the components of the field and the radius vector. The radius vector is (𝑥 − 𝑥𝑐) ̂𝑖 + 𝑦 ̂𝑗 while the
magnetic field is proportional to (𝑥2 − 𝑦2 + 𝑎2) ̂𝑖 + 2𝑥𝑦 ̂𝑗. Thus

𝑦
2𝑥𝑦 = 1

2𝑥
and

𝑥 − 𝑥𝑐
𝑥2 − 𝑦2 + 𝑎2 = 1

2𝑥

The last step is obtained by observing that the equation of the circle is (𝑥 − 𝑥𝑐)2 + 𝑦2 = 𝑥2
𝑐 + 𝑎2.

C.3 Field in the airgap because of the argument presented in the problem continues
to be given by Eq.(2). So the field ( 𝑦 = 0 ), is again

�⃗� = 𝜇𝐼0 𝑎
𝜋(𝑥2 + 𝑎2)

̂𝑖

[0.5]

0.5pt

D.1 The force 𝐹𝑥 on a magnetic dipole along the 𝑥- direction is

𝐹𝑥 = −𝜇𝑠
𝜕𝐵𝑥
𝜕𝑥 = 𝜇𝑠𝜇 𝐼0

𝜋 × 2 𝑎 𝑥
(𝑥2 + 𝑎2)2 (5)

[0.5]
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E.1
𝜇
𝜇0

= 104; 𝑎 = 6.00×10−3𝑚; OC = 6.00×10−3𝑚; OD = 8.00×10−3𝑚;

and
𝐼0 = 2.00 𝐴

and so at the midpoint P,
𝑦 = 0;

𝑥𝑃 = 𝑂𝑃 = ((1 +
√

2) × .6 + 1.8)/2 = 1.624 × 10−2𝑚
[0.5]

wherewe have used𝑂𝐷 = .8×10−2𝑚 and𝐷𝐴 = 10−2𝑚. This gives for𝐵𝑥(𝑥𝑃 , 0)

𝜇
𝜇0

𝜇0
𝜋

𝐼0 𝑎
(𝑥2

𝑃 + 𝑎2) = 104 × 4 × 10−7 × 2 × .6 × 10−2

(1.6242 + .62) × 10−4

= 0.16 𝑇
[1]

We also have

(𝜕𝐵𝑥
𝜕𝑥 )

𝑥𝑃

= 2 × 𝑥𝑝
𝑥2𝑝 + 𝑎2 × 𝐵𝑥(𝑥𝑃 , 0) = 2 × 1.624 × 10−2

(1.6242 + .62) × 10−4 × .16 = 17.34 𝑇 ⋅ 𝑚−1

[0.5]

2.0pt

F.1 The magnetic moment of the silver atom:
We use

Δ𝑥 = 2𝜇𝑠
𝑚 (𝜕𝐵

𝜕𝑥 )
𝑥𝑃

𝑙2
𝑣2𝑧

(𝑙2
2 + 𝑙3)

to rewrite
𝜇𝑠 = 𝑚Δ𝑥

2( 𝜕𝐵𝑥
𝜕𝑥 )𝑥𝑃

× 1
[ 𝑙2

𝑣2𝑧
( 𝑙2

2 + 𝑙3)]
[0.5]

= 1.8 × 10−25 × 2 × 10−3

2 × 17.34 × 106 = 1.04 × 10−23𝐽 ⋅ 𝑇 −1

[1]
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G.1 The spread in the line:
The two lines on the screen are separated symmetrically about the centre by
Δ𝑥. So the upper (lower) line is at Δ𝑥/2 from the centre. From Part (2)

Δ𝑥/2 = 𝜇𝑠
𝑚

𝑑𝐵
𝑑𝑥

𝑙2
𝑣2𝑧

(𝑙2/2 + 𝑙3)

This depends on the beam speed 𝑣𝑧. The spread in this speed leads to a conse-
quent spread in the splitting.

𝛿(Δ𝑥/2) = |𝜕Δ𝑥/2
𝜕𝑣𝑧

|𝛿𝑣𝑧

= 2(Δ𝑥/2)𝛿𝑣𝑧
𝑣𝑧

= 2(Δ𝑥/2) × 0.2
= 0.04𝑐𝑚

[0.3]
Hence the spread in the line from the centre is 0.1 - 0.04 = 0.06 cm to 0.1 + 0.04
= 0.14 cm.

[0.2]

0.5pt

H.1 Error in the evaluation of the magnetic moment:
From the previous part we have that the splitting ranges from 0.12 cm to 0.28
cmwhereas earlier it was 0.2 cm. The relationship between the splitting and the
magnetic moment is linear. So the magnetic moment ranges from (0.12/0.2) to
(0.28/0.2) the original value. This yields 0.62 × 10−23 J⋅T−1 to 1.46 × 10−23 J⋅T−1.
The total spread is 0.84 × 10−23 J⋅T−1 about the mean value of 1.04 × 10−23 J⋅T−1

[0.3]
or in other words

𝜇𝑠 = 1.04 ± 0.42 J⋅T−1

[0.2]

0.5pt


